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Abstract

Population control of invasive mammal pests is an ongoing process in many conservation

projects. In New Zealand, introduced wild domestic cats and mustelids have a severe

impact on biodiversity, and methods to reduce and maintain predator populations to low lev-

els have been developed involving poisoning and trapping. Such conservation efforts often

run on limited funds, so ways to minimize costs while not compromising their effectiveness

are constantly being sought. Here we report on a case example in a 150 km2 area in the

North Island, New Zealand, where high predator numbers were reduced by 70-80% in an ini-

tial ‘knockdown’ trapping program, using the full set of traps available in the fixed network

and frequent checks, and then maintained at low density using maintenance trapping with

less frequent checking. We developed and applied a simulation model of predator captures,

based on trapping data, to investigate the effect on control efficacy of varying numbers of

trap sites and numbers of traps per site. Included in the simulations were captures of other,

non-target, introduced mammals. Simulations indicated that there are potentially significant

savings to be made, at least in the maintenance phase of a long-term predator control pro-

gramme, by first reducing the number of traps in large-scale networks without dramatically

reducing efficacy, and then, possibly, re-locating traps according to spatial heterogeneity in

observed captures of the target species.

Introduction

Invasive mammalian pests continue to have significant negative impacts on biodiversity values

internationally [1–3]. Although some invasive mammals have been successfully eradicated

from islands [4, 5], eradication is often not an option on large mainland areas (>100 km2),

especially where the broadcast application of toxic baits for pest control is socially or politically

unacceptable [6]. In such cases the alternative strategic choice is often sustained ‘maintenance‘

control, which attempts to reduce and then hold populations of pests below a threshold density

at which their impacts are either eliminated or at least reduced to a level deemed acceptable by

stakeholders [7, 8]. In New Zealand, several introduced mammal pests exert a range of nega-

tive impacts on conservation and production values [9], among which is a suite of small (<5
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kg) predators comprising mustelids and feral cats [10]. These predators are currently managed

variably by national and regional government agencies and private conservation initiatives,

either singly or as multiple species, using a range of strategic population reduction approaches

involving trapping, poisoning, or both [11, 12].

Where landscapes are accessible, fixed networks of kill-traps have the potential to provide

long-term maintenance control of mammalian pests in New Zealand [13, 14]. Such approaches

can, however, incur high costs due to labour costs associated with trap checking and re-baiting,

and maintenance costs associated with trap servicing and replacement [15]. Recent advances

have been investigated to reduce these costs, including the implementation of wireless technol-

ogy to monitor traps remotely for target pest captures, non-target captures, sprung-but-empty

traps or bait removal [16]. Given, however, that pest control programmes invariably operate

on tight budgets, an imperative to reduce running costs further is ever present.

One potential improvement to reduce cost is refining the layout of the trap network in rela-

tion to changing predator numbers. Typically, in a control programme for mammalian pests,

an initial ‘knockdown’ phase, where large numbers of pests are removed, is followed by the

ongoing maintenance control phase to keep the diminished population at its reduced level

[14]. Fixed trap networks have the real possibility that the high number of traps deployed

against the initial high predator population will quickly become surplus to requirements for

the ongoing, long-term maintenance of the population at a lower density. Refining the ongo-

ing operation of trapping networks in response to anticipated changes in predator population

levels would allow freeing-up of the limited resources typically available for pest-control pro-

grammes [17] and enable their re-allocation elsewhere. The cost-effectiveness of this type of

approach has been debated in overseas examples of mammalian pest control [18], but it has

not yet been implemented or trialed in New Zealand.

Poutiri Ao ō Tāne is a pest control programme run by the Hawke’s Bay Regional Council

on the east coast of the North Island of New Zealand. This programme uses an infrastructure

of kill-traps that target, in particular, three introduced predators: ferrets (Mustela furo), stoats

(M. erminea), and feral cats (Felis catus). The fixed trap network was established in 2011 with

the aim of reducing predator numbers to minimal-impact levels and then maintaining these

numbers while minimizing ongoing costs. For the initial knockdown phase, kill-traps were

spaced at 200–300 m intervals to ensure all individual predators would be exposed to at least

one trap (home ranges of each species typically exceed 50 ha [10, 19]), as per best-practice rec-

ommendations for mustelids and cats [20]. To address the issue of cost-minimisation [18],

establishment and maintenance of the network has been streamlined by deliberately setting

traps along farm access roads and tracks that enable mechanized travel between trap sites and

easy access by foot, thereby minimizing transportation and labour costs. After the anticipated

initial period of rapid reduction in predator numbers over the period of late 2011 to 2012 [21],

the programme has been continued by a maintenance phase since 2013 to suppress predators

to low levels continually, using the same network.

In the present study, we first developed an individual-based spatial model of the diminished

predator populations [22] and used this to simulate predator trapping across the Poutiri Ao ō
Tāne trap network with the aim of determining if a similar number of predators could have

been captured with fewer trap sites. We also examined the effect of having multiple traps at

each location on the number of predators captured, with both objectives geared towards iden-

tifying the most cost-effective means of maintaining low predator numbers. We also examined

if those traps removed could be selected based on their capture histories.

PLOS ONE Refining kill-trap networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0238732 September 8, 2020 2 / 12

neither involved in the analysis nor influenced data

presentation or interpretation. All funding was co-

awarded to AMG and BW.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0238732


Methods

Establishment, operation and maintenance of the trap network

The Poutiri Ao ō Tāne trap network was designed and implemented by the Hawke’s Bay

Regional Council across ~150 km2 in the Hawke’s Bay region of the east coast of New Zeal-

and’s North Island [21], 45 km north of the city of Napier (39.5oS, 176.9oE; Fig 1). The terrain

comprises predominantly rolling to steep farmland ranging from 400 to 1,100 m elevation. In

non-farmed areas the land comprises a mixture of exotic scrub vegetation and some remnant

patches of native forests at elevations below ~800 m, giving way to more contiguous forest

above this level, interspersed with areas of mountain and tussock grasslands at the highest ele-

vations [23].

The trapping network was established in 2011 and has been operational since December of

that year, comprising 690 kill-traps (DOC 250 model, http://www.doc.govt.nz/documents/

conservation/threats-and-impacts/animal-pests/doc250-predator-trap.pdf) set across 15,000

ha (Fig 1). Traps have remained fixed in place since December 2011, with field staff checking

them on a monthly basis to record any kills, then clearing and re-setting the traps. For the

30-month duration of this study (December 2011 to May 2014) approximately 50% of the

traps were set using either fresh or dried rabbit meat as bait, with the remainder either set but

unbaited (December 2011 to December 2012), or set and lured using a prototype synthetic

preparation of rat-odour oil (Good Nature Ltd, Wellington, New Zealand) as an attractant

(December 2012 onwards).

Empirical trapping data

Over the 30-month period between December 2011 and May 2014, monthly data on predator

captures were accrued and compiled (Wildlife and Environmental Trapping Advancements

Fig 1. National (a), local (b) maps of the study area. Maps depict (a) the geographical location of Napier city within New Zealand, with the study region indicated by the

red square; (b) the Poutiri Ao ō Tāne trap network, with individual trap sites shown by red dots and patches of forest and shrub land indicated by dark and light green

shade respectively.

https://doi.org/10.1371/journal.pone.0238732.g001
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Ltd, Napier, New Zealand; http://www.bizdb.co.nz/company/9429035740032/). The data

included GPS coordinates of all trap locations, all captures (target and non-target species), and

all cases of sprung-but-empty traps. Of primary interest were captures of target predators (fer-

rets, stoats and feral cats), although incidental captures of other mammalian pests were also

examined, including possums (Trichosurus vulpecula), rabbits (Oryctolagus cuniculus), ship

rats (Rattus rattus), Norway rats (R. norvegicus), mice (Mus musculus), hedgehogs (Erinaceus
europaeus occidentalis), and weasels (M. nivalis vulgaris).

Data gathered between December 2011 and May 2013 were not used in simulation model-

ling, because this time-frame included the large decline in predator numbers during the initial

knockdown phase of the newly implemented control programme [24]. Instead, we focused on

12 months of predator data accrued during the maintenance phase of control, from June 2013

through May 2014. This approach was supported by the lower number of captures of target

predators in the 3rd year after initiation of the network compared to the first (Fig 2A).

Fig 2. Predator (a) and non-target (b) mammals captured monthly; data used for simulations are highlighted in light grey.

Note the differing dependent-axis scales.

https://doi.org/10.1371/journal.pone.0238732.g002
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Captures over this latter period were aggregated into monthly totals to reflect the schedule of

checking traps every month.

Trapping simulation model

We developed an individual-based trapping model [22] to simulate monthly captures of the

three species of target predators (ferrets, stoats, and cats), and also five of the non-target spe-

cies (ship and Norway rats, hedgehogs, rabbits and possums), which provided realistic figures

for trap competition and saturation (i.e. traps becoming triggered and therefore being out of

action until checked again).

In this framework, we simulated animals distributed randomly across the landscape with

no constraints with respect to habitat, topography or elevation. The home range of each animal

was assumed to be circular and its size defined by σ, the standard deviation of the bivariate

normal distribution, where the radius is given by 2.45σ. The probability of animal (i) being

caught in an empty trap (j) was a function of the distance (d) between the home-range centre

and the trap, as given by:

Pij ¼ g0 exp
� d2

ij

2s2

� �

where g0 was the nightly probability of capture in an empty trap located at the centre of its

home range [25]. The probability of capture was calculated for each trap+animal combination.

Each night, the capture or not for each animal j, was calculated as a random draw from a bino-

mial distribution with probability equal to the cumulative probability of capture, calculated as:

Pj ¼ 1 �
YT

i¼1

ð1 � PijÞ

where T is the number of available traps that night. Conditional on capture, the actual trap

that caught the animal was a random draw from a multinomial distribution with probability

Pij.
The three target species all had similar home range sizes and capture probabilities [26] and,

therefore, we modelled them as a generic ‘target predator’ (ferret, stoat or cat) with values of g0

= 0.05 and σ = 400 m, corresponding to a 95% home-range of c.300 hectares. We based these

values on empirical values reported in published literature and reports [19, 27–30]. We mod-

elled the non-target species using g0 = 0.05, and σ = 40 m for rats, hedgehogs and rabbits and σ
= 65 m for possums, corresponding to 95% home-ranges of 3 and 8 hectares respectively. For

both targets and non-targets, we assumed that g0 and σ were constant over the simulation

period (i.e. bait attractiveness, capture rate and home range size remained constant).

To compare the relative effectiveness of different trap networks, would ideally need the

underlying population size to be known, however the only data available are of the actual cap-

tures each month. We therefore used a variant of approximate Bayesian computation (ABC,

[31]) to estimate the monthly numbers of potentially trappable animals of both target and

non-target species (as distinct groups) over the period June 2013 to May 2014. For each

monthly data set we initiated the simulation with 200 target and 1,000 non-target animals dis-

tributed randomly across the landscape (i.e. with no constraints on home range centres related

to habitat, topography or elevation), and then used the trapping model above to simulate cap-

tures of the target and non-target groups of species concurrently over a period of 30 days

under the full trapping network. After each iteration we compared the number of simulated

captures of target and non-target animals with the actual captures for that month (i.e. those in

Fig 2). If the simulated captures exceeded the actual captures, the background population size
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was decreased and vice versa if the simulated captures were lower than the actual captures. The

next iteration was then run with the updated background population size. This process was

repeated for 200 iterations, by which stage the background population size was relatively stable

between iterations (i.e. <20% variation between successive runs). Background population

sizes of the target and non-target species from the last 100 iterations were used for the purpose

of comparing different levels of trapping effort for each month. Using this approach to esti-

mate the background population size negated the need to model changes in population size

due to immigration and breeding.

Simulation modelling of different trapping effort scenarios

We simulated captures under five levels of trapping effort relative to the actual trap network:

all 690 traps (100%) were operational, or 75%, 50%, 33%, or 25% of traps were operational. We

constructed the four sets of reduced trap networks by ordering traps by latitude and longitude

and then thinning at the appropriate level (e.g. removing every second trap in the ordered list

for the 50% trap network). For each level of trapping effort we also simulated four levels of

trap capacity at each trap site, ranging from one trap (the actual regime), to two, three or four

traps per trap site.

These combinations of trapping effort and trap capacity resulted in 20 sets of simulations (5

levels of trap effort × 4 levels of trap capacity). For each set, the model was run 500 times for

each of 12 one-month periods, with the background population size drawn randomly from the

100 simulated background population sizes for that month (estimated previously). We

recorded the number of simulated target and non-target animals captured in each iteration,

and the results were summed across iterations and months. For each set of simulations we

defined the effectiveness of the trapping effort as the number of simulated captures, expressed

as a percentage of the captures achieved under the actual trapping layout (i.e. the full trap array

with a single trap at each trap site), for both target and non-target species.

Results

Effectiveness of the standard trapping network

Between December 2011 and May 2014, the trap network killed a total of 303 predators (Fig

2). Maximum kills occurred during and after the main summer juvenile growth/weaning

period and the autumn dispersal period in each year (December to May). As expected, the

predator capture rate in the initial knockdown phase, during the first year after commence-

ment of trapping, declined significantly over successive years: an average of 19.2 predators

were trapped per month between December 2011 and May 2012, and the trap rate declined by

54% over the next 12 months (June 2012 to May 2013), and by 66% over the subsequent 12

months (June 2013 to May 2014) relative to the first six months. Predator captures showed

notable heterogeneity among individual trap sites: of the 690 traps originally deployed, 71% of

traps had not captured any target species in the 30 months from December 2011 until May

2014, 19% captured one target predator, 6.5% captured two, and 3.5% of traps captured from

three to five predators.

Simulated captures of predators and of five non-target species

For predators, reducing the percentage of traps set progressively reduced the proportional sim-

ulated catch relative to the full network (Fig 3A). Reducing the percentage of traps to 75% and

down to 25% of the original trap numbers reduced the mean proportional catch to an average

of 95% to 76% of actual captures, respectively (Fig 3A). In contrast, progressive and more
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substantial changes in predicted simulated non-target captures–up to a 73% decrease–were

observed when the proportion of traps set was decreased (Fig 3B). The percentages of simu-

lated non-target animals caught using 75% down to 25% of the original traps were 78% down

to 27%, respectively, of the value for a full trap network (Fig 3B).

Increasing trap capacity, from a single trap per site to two, three or four traps, resulted in lit-

tle change in the predicted percentage of either predators or non-target species captured (Fig

3A and 3B). The small changes that were observed were mostly due to the initial doubling

from one to two traps per site, but never exceeded a 2% increase; further increases in trap

capacity beyond this initial doubling failed to elevate the percentage of captures beyond an

additional 0.5% increase.

Discussion

Strategies for increasing the cost-effectiveness of mammalian pest-control trapping operations,

which often run on very limited budgets, include improving accessibility to real-time trap-site

information from the trap network,either through logistical improvements in physical access

or by facilitating remote-sensing of trap sites [16], and/or by optimizing the spatial arrange-

ment of the trapping network [15, 32]. In the present study we have applied individual-based

spatial simulation modelling in the latter context to determine the effect of changing trap den-

sities on predator captures. This could prove to be a cost-effective approach to optimizing the

operation of trapping networks, since testing such parameters empirically would be both

expensive and time consuming, and would pose a risk of failure if too many traps were

removed. Elsewhere, simulation modelling has been used for optimizing insect detection and

control networks [33], but we are unaware of such an approach being used for optimizing ver-

tebrate pest-trapping networks, especially one that incorporates competition for traps from

non-target species into the model. Tompkins and Ramsey [34] used a similar individual-based

spatial simulation approach for optimizing bait-station delivery of fertility control agents to

brushtail possums, but because multiple baits could be easily delivered in each bait station they

Fig 3. Simulated captures of predators (a) and non-target mammals (b) as a percentage of animals captured under the current trapping configuration. Data points

represent the mean relative captures, over twelve one-month trapping sessions, for a range of trapping configurations, each expressed relative to a standard (100%) value

of a single trap set per site with all available traps utilized. Vertical lines indicate the 5% and 95% percentile for each combination of the number of traps at each site (1 to

4) and the percentage of trap sites utilized (all, 75%, 50%, 33%, and 25%).

https://doi.org/10.1371/journal.pone.0238732.g003
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did not have to incorporate the effect of bait loss (or trap occupancy) due to non-target species

in their modelling.

Our simulations suggest that, during the maintenance phase of predator trapping, substan-

tial reductions in the number of traps used could still result in similar numbers of captures to

those actually obtained using the full network. Simulation results highlighted that even when

75% of traps were removed from the network, approximately 75% of the actual target preda-

tors caught would still probably be captured. If the proportion captured needed to be main-

tained above 90% of what was actually captured, 25% of traps could conservatively be removed

(i.e. resulting in 95% of the target animals captured with the full network), or up to 50% could

be removed if a less conservative approach was chosen (i.e. 89% of the target animals captured

with the full network).

Importantly, these potentially beneficial reductions in trap density will be dependent on the

home range of the predators selected in the simulations: the degree to which a trap network

can be reduced while maintaining effectiveness against a suite of three species, as here, will be

largely dependent on the target species with the smallest home range [35]. In our modelled

environment the three target species were all assigned the same home range size (σ = 400 m),

although it is worth noting that if ship rats were to be included in simulations as a fourth target

species (σ = 40 m), the network would not be able to have up to 50% of the traps removed with-

out substantially reducing its effectiveness for capturing that species. As an additional caveat to

changing trap numbers, alterations in the trapping network would also, inevitably, have an

impact on the relative capture of non-target species [12]. In our simulations the effect of trap

removal was greater on non-target than on target species, due largely to some of the non-target

species having smaller home ranges [10]. Indeed, as the trap network was reduced, the mean

distance between traps increased, resulting in the simulated home ranges of some non-target

animals no longer overlapping with set traps.

The lack of an effect of increasing the trap capacity at each site, in our simulations, was not

surprising [22], and is likely to be due to a combination of the relatively low density of both

target and non-target species at the study site [21] with no localized aggregations. Also, the

nominal length of time between trap checks (i.e. 1 month) along with low pest densities would

not be sufficient for the trap network to become saturated. In our simulations, animals were

located randomly across the landscape, but if animals were clustered in areas around traps, or

if their distribution was influenced by landscape structure [36], trap saturation would be more

likely in those areas, and therefore having multiple traps at a site might become more beneficial

[22]. This is of practical relevance because of the advent of multi-kill-traps that have recently

come to market (http://goodnature.co.nz, https://nzautotraps.com). Such traps are being

deployed in a number of predator-free NZ programme sites across New Zealand because of

their perceived effectiveness, however, given the example modelled here and the results

reported previously[22], there is likely to be little advantage gained from their use.

Empirical trapping data for the capture of target and non-target species (Fig 2) indicate that

numerically more non-target mammals were captured than targets in the study area. This, in

itself, suggests that competition for traps between target and non-target species could be a fac-

tor limiting captures of target predators, and this competition might be reduced if traps or

trap-setting could be modified to exclude non-target species, which would in turn increase the

traps available for target species and reduce or eliminate any unacceptable trap-induced inju-

ries caused to non-targets [37].

Of the 690 traps originally deployed, >70% of traps caught no target species in 30 months

of trapping, in contrast to 3.5% of traps that captured at least three animals. This spatial hetero-

geneity of predator–trap encounters is a recognized phenomenon in mammalian pest control

operations [38] and should also be taken into account for refining trap network performance.
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In our case, if the traps in locations that had no captures were removed in preference to those

traps that had captured several times, the overall effectiveness of the modified trap network

might be greater than that simulated and could represent an additional means by which the

costs associated with running a trap network could be reduced. However, the difficulty lies in

knowing which traps to remove [32]. It may be possible to use initial data to guide which traps

to remove. In detailed examination of the data we found that of the 568 traps that had no pred-

ator captures in the first 6 months of the study, only 18% (n = 104) had subsequent captures

over the remainder of the study. In contrast, of the 87 traps that had a target capture in the first

6 months, 41% (n = 36) had subsequent captures. In general, traps that caught a target predator

in any given fixed-length period were more likely to catch another predator in a subsequent

period of similar length. We did not formally explore the reasons for this heterogeneity, but it

is likely that environmental factors play a role, especially habitat and landscape: features of

habitat connectivity have been shown elsewhere to influence the heterogeneity of captures of

small mammals across a landscape [32, 39]. Most markedly in our study, only 10% of traps

that had no captures in any 6-month period had captures in the next 6-month period, com-

pared to 22% of traps that had a capture in the first 6 months also having a capture in the next

6 months. Hence, re-arrangement of trap networks in response to these noted effects of spatial

heterogeneity on predator captures could represent an additional approach for refining a trap-

network, as has been highlighted elsewhere as a possible means of improving the performance

of a trapping programme [40].

Overall, the simulation results here indicate there are potentially significant savings to be

made, at least in the maintenance phase of a long-term predator control programme, by first

reducing the number of traps in large-scale networks without dramatically reducing efficacy,

and then, possibly, re-locating traps according to spatial heterogeneity in observed captures of

the target species. At the operational level, the true dollar value of such projected savings can

be evaluated using existing bio-economic modelling approaches to assess the costs and benefits

to pest-control operations [15]. Feasibly, more cost savings could be made via the uptake of

emerging technologies, such as applying wireless remote sensing of traps [16], using self-re-

setting traps [40], and employing long-life baits to reduce the frequency of trap checks and bait

replacement [41]; the latter is becoming more important, as traps in the Poutiri Ao ō Tāne net-

work began to be checked only once every 3 months after mid-2015 (Wendy Rakete-Stones,

Hawke’s Bay [New Zealand] Regional Council, pers. comm., 2018). Further, we have identified

here that the full extent to which cost savings can be realized will depend on a fuller knowledge

of aspects of the target species’ biology relative to their habitat and to the trapping programme,

including knowledge of home range sizes, population density (in turn affecting the rate at

which traps fill and the network becomes saturated), and the density and relative trapability of

the non-target species at the site. In the case of the Poutiri Ao ō Tāne network in particular,

but also in the broader context, the approach developed here provides further support for the

use of simulation modelling to refine and optimize predator-trapping practices [42, 43]. We

suggest that managers of predator-control programmes could benefit from using a similar

approach to maximize the impact of operations with limited funding, where the objective is

population control rather than eradication [1, 44].
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